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Abstract. A possible experiment is discussed, for the observation of Anderson localization of the neutron.
The localized state may be formed in the process of inelastic downscattering of thermal or cold neutrons
in a highly disordered substance with low neutron capture and upscattering cross sections. The lifetime
of trapped (localized) neutrons in the sample is measured by counting the upscattered neutrons with
a neutron counter surrounding the sample. Estimations of experimental parameters relevant to such an
experiment are given.
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1 Introduction

The phenomenon of the localization of quantum states in
random media was first described years ago by Anderson
in his famous paper [1]. He considered the quantum me-
chanical diffusion of electrons in a disordered solid and
found that electron diffusion is absent in certain random
lattices. This discovery has its widest and most striking
experimental manifestations in the transport properties
of electron in condensed matter systems [2]. It was rec-
ognized that a number of phenomena may be understood
in terms of the localization of electronic wave functions in
space.

The dominant mechanism for the localization of states
in a random medium is coherent multiple scattering and
quantum interference. Therefore, the localization effect
should also be of importance in other wave phenomena.
This was demonstrated theoretically [3] by considering
classical wave equations, it was then noted by several
authors [4–7] that localization should occur for classi-
cal waves of different natures (electromagnetic, acoustic)
propagating in a disordered medium. Up to now only the
precursive effects of localization, in the form of the en-
hanced backscattering of visible light by aqueous suspen-
sions of polystyrene spheres have been observed [8,9]. This
regime of weak localization is the best one understood
theoretically because perturbation techniques are appli-
cable. In experiments on the propagation of visible [10,
11] and microwave range elecromagnetic radiation [12,13]
evidence of nonclassical diffusion was found. However, as
was shown in [14] both theoretically and experimentally,
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some of these results can be explained without recourse to
strong localization when resonance scattering is properly
taken into account, which may lead to very low transport
velocities.

During the last decade the theoretical and experi-
mental situation regarding the localization of classical
waves (light, sound) was extensively discussed, but no fi-
nal prediction was made for the problem of wave trans-
port in the localization regime. The complete theory of
localization is still lacking. It has been solved for the
one-dimensional case and significant progress has been
achieved in two-dimensional localization theory. For three-
dimensional case, the situation is still undetermined. For
example no definite way has been proposed to calculate
the density of states or the value of the localization length
for an arbitrary disordered medium.

Traditionally, during wave propagation in disordered
media, scattering takes place on scales much longer than
the wavelength. In this classical diffusion limit, in which
kl � 1, where k is the wave vector and l is the elas-
tic mean-free path, the phases of scattered waves are un-
correlated and propagation may be described in terms of
diffusion of the particle density. The diffusion coefficient
in this case is D = vl/3(1 − 〈cos θ〉), where l/(1 − cos θ)
is the transport free path length. Localization of waves
may occur when the scale of coherent multiple scattering
is reduced to the wavelength: kl ∼ 1. In this case (the
strong scattering regime) extended correlations in scat-
tered waves lead to destructive interference, which reduces
the average transport rate, and the diffusion coefficient is
determined by the scale (l − lc) instead of l, where ac-
cording to [15] lc ' k−1. When l reaches a critical value
lc, the waves are localized in the sense of Anderson [1]
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that D(L) → 0 as L → ∞, where L is the sample size.
Experimental evidence of localization manifests itself in
the special character of the transmission T of an inho-
mogeneous layer of thickness W in the presence of in-
cipient localization, which changes from T = l/W , (clas-
sical diffusion) to (l/W )2 (critical regime), and then to(
(lc − l)2/W 2

)
exp (−W/Lloc).

2 Proposed method

Meshcherov [16] proposed experiments for transmitting
neutrons through inhomogeneous media for the purpose of
demonstrating the localization phenomenon for neutrons.
The neutron energy convenient for observing the localiza-
tion is in the ultracold range (E ' 10−7 − 10−6 eV), for
which the refraction index n = (1− k2

0/k
2)1/2 maximally

differs from unity and scattering from inhomogeneities of
the media is the strongest. The localization state is not
reached in this type of experiments as the wave is almost
totally reflected from the region of localization and pene-
trates through the sample only due to the exponential tail
of the localized wave function ψ ∼ exp(−x/Lloc).

Transmission experiments may be extremely difficult
to perform and may be not decisive, especially in case
when the localization length is not very great. For exam-
ple, if Lloc ≤ (102 − 103)k−1 ' (1 − 10) µm, at a sample
thickness of only (10−100) µm, the transmitted intensity
will be e−10 of the primary beam flux. An additional seri-
ous problem is to have a very thin homogeneous (without
holes) sample. On the other hand, for very large localiza-
tion lengths, of the order (105−106)k−1 ' (0.1−1) cm, the
exponential dependence of the transmission on the sample
thickness may be determined by inelastic UCN losses.

In this article we would like to propose another type
of experiment, where it may be possible to form the lo-
calized state of a neutron directly. This may be achieved
through inelastic downscattering of the beam of slow neu-
trons in disordered media. According to the sense of lo-
calization of the particle, its probability density exponen-
tially decays outside a certain “region of localization”.
Localized particles have exponentially small chances of
running away from a random system. Any particle out-
side the localized energy band has an exponentially small
probability of getting inside a random system. Neutrons
localized in this way may be captured or inelastically up-
scattered to the thermal (or cold) energy range with a
time constant dependent on the corresponding cross sec-
tions: τ = (

∑
i niσiv)−1, where ni is the mean number

per cm3 of atoms with the cross section σi, v is the neu-
tron velocity, and σ = σinel+σa is the sum of upscattering
and nuclear capture cross sections. The most convenient
substances for realizing such experiments are strong co-
herent neutron scatterers with low capture and upscatter-
ing cross sections (at low temperatures). The calculated
time constants are given in Table 1 for several substances
with their effective Debye temperatures TD [17] and cor-
responding sample temperatures Ts. In these calculations,
the density of the disordered medium was taken to be

Table 1. UCN mean life times in some substances at one tenth
of normal density.

Substance Be BeO C (graphite) D2 D2O CO2

TD(K) - 1200 - 114 - -
Ts(K) 98 130 72 5 - -
τ (ms) 25 38 58 850 550 260
τdiff(ms) 19 25 33 69 69 58

one tenth of the normal density, the temperatures of the
samples were chosen such that the upscattering cross sec-
tion is approximately equal to the capture cross section,
the former being calculated in the incoherent one-phonon
approximation [18] with the experimental frequency spec-
trum [19] for beryllium and graphite, and Debye frequency
model for BeO and deuterium. For D2O and CO2, the
“optimal” temperatures were not calculated in this work.
It was assumed that the frequency spectrum and Debye
temperatures do not change significantly in the disordered
form. The sample temperatures may be taken only for ori-
entation in view of mentioned approximations.

After irradiation of the sample by a beam of slow neu-
trons, the beam is closed and the time dependence of the
upscattered neutron intensity is measured with neutron
counters located around the sample. In order to distin-
guish true localization from classical diffusion, the sample
must be performed in such a manner that diffusing neu-
trons are captured significantly sooner in the case of diffu-
sion than in the presence of localization, when the particle
does not leave the microscopic site the size of the localiza-
tion length. Two sample arrangements are possible, with
one- and two-dimensional arrangements of the neutron ab-
sorbers inside the sample. In the first arrangement thin
plane foils of proper absorbing material are placed between
thin layers of disordered media. In the second arrange-
ment, the disordered media has the form of long thin cylin-
ders inside the absorbing casings. The Fourier method cal-
culations of the nonstationary diffusion of particles, ho-
mogeneously distributed over the volume, to the absorb-
ing boundaries, give the following characteristic particle
density decay time constants: τ1 = [v(1/la + π2ls/3d

2)]−1

for the first case and τ2 = [v(1/la + 4α2ls/3d
2)]−1 for

the second. Here v is the particle velocity, la is the mean
capture length for the particle, d is the thickness of the
disordered layer in the first case and the cylinder diameter
in the second one, and α = 2.405 is the first root of the
Bessel function J0. In the fourth row of Table 1, the cal-
culated UCN lifetimes are shown, accounting for neutron
diffusion to the absorbing boundaries for one-dimensional
case: v = 10 m/s, d = 0.05 cm, ls = 10−5 cm.

The density of trapped (localized) neutrons may be
estimated using the following expression for the rate
P (EUCN ) of UCN production into the unit energy
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Table 2. The rate of UCN production in some substances at
one tenth of normal density in the energy interval 0.1 µeV at
EUCN = 0.525 µeV.

Substance Be C (graphite) D2 BeO

Ts(K) 98 72 5 130
En(meV) 25 25 4 30
P (s · cm3 · 0.1 µeV)−1 0.32 0.07 13 0.11

Fig. 1. (a) The UCN with energies below the boundary energy
E0 must be trapped according [20] into micropores by tunnel-
ing from thin layers (thickness ∼ λ ∼ 100 Å) surrounding the
pores. (b) For highly disordered media, multiple coherent scat-
tering at the potential fluctuations may lead to a superposition
of destructively interfering waves in such a way that the neu-
tron may become localized in the energy interval [E0, E1].

interval:

P (EUCN ) = n

∫
Φ(E)σ(T,E → EUCN )ρ(ElocUCN )dE,

(1)

where Φ(E) is the primary neutron flux density, σ(T,E →
EUCN ) is the cross section for the downscattering of neu-
trons with energy E in the primary beam on the nuclei
of the sample into the unit UCN energy interval, n is the
mean number per cm3 of the sample, and ρ(ElocUCN ) is the
density of localized UCN states.

Table 2 gives the values of P (EUCN ) for several sub-
stances at corresponding “optimal” temperatures Ts. The
final energy is 0.525 µeV, (v = 10 m/s), the UCN en-
ergy interval was taken as 0.1 µeV, the density of samples
was taken as one tenth of the normal density, and the
primary neutron flux had the Maxwellian form Φ(E) =
φ0E exp(−E/En)/E2

n, with φ0 = 1010 n/cm2/s and En
given in Table 2. The localized UCN density of states is
not known, so we took it to be equal to the density of
states for a free neutron.

The present proposal is related to the paper pub-
lished years ago [20] that proposed trapping neutrons
in samples with micropores. The proposal was made in
connection with experiments [21] (later proven to be
incorrect [22]) for the observation of very long (tens of sec)

lifetimes of slow neutrons in LiF crystals. The difference
between these two variants may be seen in Figure 1. The
UCN with energies below the boundary energy E0 must
be trapped according [20] into micropores by tunneling
from the thin layer (thickness ∼ λ ∼ 100 Å), surround-
ing the pore. Classically, in not strongly disordered me-
dia particles with energy E > E0 are not trapped by the
medium. For strongly disordered media, multiple coher-
ent scattering at the potential fluctuations may lead to
a superposition of destructively interfering waves in such
a way that neutrons may become localized in the energy
interval [E0, E1]. As was mentioned, the theory of local-
ization in its modern state is not able to predict the value
E1 or the density of localized states in this energy band.

The crucial question is the density of localized states
in equation (1) which determines the possible density of
trapped neutrons. In the case where the transmission ex-
periments [16] are successful, the proposed method of ob-
servation of Anderson localization may answer this ques-
tion.
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